Self-Supervised Transformers as Iterative Solution Improvers for Constraint Satisfaction

Yudong Will Xu, Wenhao Li, Scott Sanner, Elias B. Khalil

Constraint Reasoning

Constraint Satisfaction Problems

Variables

$$X = \{X_{1,1}, X_{1,2}, \dots, X_{9,9}\}$$

represent cell assignments

Domains

$$D = \{D_1, D_2, \dots, D_{81}\}$$

$$D_i = \{1,2,3,4,5,6,7,8,9\}$$

	7		5	8	3		2	
	5	9	2			3		
3	4				6	5		7
7	9	5				6	3	2
		3	6	9	7	1		
6	8				2	7		
9	1	4	8	3	5		7	6
	3		7		1	4	9	5
5	6	7	4	2	9		1	3

Constraints

$$AllDifferent(X_{1,1}, X_{1,2}, ..., X_{1,9})$$

...

$$AllDifferent(X_{1,1}, X_{2,1}, ..., X_{9,1})_{-}$$

...

$$AllDifferent(X_{1,1}, X_{1,2}, ..., X_{3,3})$$

...

each row has different values

each column has different values

each 3×3 square has different values

Traditional Technique: Stochastic Search

Traditional Technique: Stochastic Search

Traditional Technique: Stochastic Search

Our model: ConsFormer

ConsFormer: What is the input?

Variable assignments as a set of tokens

→ Token embedding for discrete domains

Need to also encode positional information!

ConsFormer: What is the input?

Variable assignments as a set of tokens

→ Token embedding for discrete domains

Variables indices

→ Absolute Positional Encodings

Variables under the scope of the same constraints

→ Relative Positional Encodings

e(2) + 11

Binary Constraint Graph

RPE

ConsFormer: What is the architecture?

ConsFormer: How to learn?

Need a signal to guide model learning. Existing work mostly fall into two categories.

Supervised Learning

Reinforcement Learning

Challenge:

- Labels are difficult to obtain for complex instances.
- Labels are ambiguous for instances with multiple correct solutions.

Challenge:

 Uses black-box reward function which are often sparse and overly complicated.

ConsFormer: How to learn?

In traditional stochastic search, we can define *Violation Degree* to assess how badly constraints are violated.

→We adapt this method and design differentiable penalty functions.

ConsFormer

Results

Problem	Method	Test Instances	Harder OOD Instances		
Sudoku	Z. Yang et al. (2023)	99.8	28.6		
	ConsFormer	100	77.74		
Graph-Coloring $(k = 5)$	OR-Tools ANYCSP ConsFormer	83.08 79.17 81.0	57.16 34.83 47.33		
Graph-Coloring $(k = 10)$	OR-Tools	52.41	10.25		
	ANYCSP	0.00	0.00		
	ConsFormer	52.60	11.92		
NurseRostering	OR-Tools	100	100		
	ANYCSP	-	-		
	ConsFormer	100	100		
MAXCUT	OR-Tools	143.89 (1.84%)	378.62 (3.08%)		
	ANYCSP	1.22 (0.02%)	51.63 (0.42%)		
	ConsFormer	24.44 (0.31%)	155.88 (1.27%)		

Thank you!

Read our paper here

